Inverted Edwards Coordinates
نویسندگان
چکیده
Edwards curves have attracted great interest for several reasons. When curve parameters are chosen properly, the addition formulas use only 10M+1S. The formulas are strongly unified, i.e., work without change for doublings; even better, they are complete, i.e., work without change for all inputs. Dedicated doubling formulas use only 3M + 4S, and dedicated tripling formulas use only 9M + 4S. This paper introduces inverted Edwards coordinates. Inverted Edwards coordinates (X1 : Y1 : Z1) represent the affine point (Z1/X1, Z1/Y1) on an Edwards curve; for comparison, standard Edwards coordinates (X1 : Y1 : Z1) represent the affine point (X1/Z1, Y1/Z1). This paper presents addition formulas for inverted Edwards coordinates using only 9M+1S. The formulas are not complete but still are strongly unified. Dedicated doubling formulas use only 3M + 4S, and dedicated tripling formulas use only 9M + 4S. Inverted Edwards coordinates thus save 1M for each addition, without slowing down doubling or tripling.
منابع مشابه
Optimizing Double-Base Elliptic-Curve Single-Scalar Multiplication
This paper analyzes the best speeds that can be obtained for single-scalar multiplication with variable base point by combining a huge range of options: – many choices of coordinate systems and formulas for individual group operations, including new formulas for tripling on Edwards curves; – double-base chains with many different doubling/tripling ratios, including standard base-2 chains as an ...
متن کاملTwisted Edwards Curves
This paper introduces “twisted Edwards curves,” a generalization of the recently introduced Edwards curves; shows that twisted Edwards curves include more curves over finite fields, and in particular every elliptic curve in Montgomery form; shows how to cover even more curves via isogenies; presents fast explicit formulas for twisted Edwards curves in projective and inverted coordinates; and sh...
متن کاملEdwards Curves and Extended Jacobi Quartic-Curves for Efficient Support of Elliptic-Curve Cryptosystems in Embedded Systems
The efficient support of cryptographic protocols based on elliptic curves is crucial when embedded processors are adopted as the target hardware platforms. The implementation of Elliptic Curve Cryptography (ECC) offers a variety of design options, mostly covering the specific family of curves and the related coordinate system. At the same time, theory shows that a limited set of solutions can a...
متن کاملAnother Approach to Pairing Computation in Edwards Coordinates
The recent introduction of Edwards curves has significantly reduced the cost of addition on elliptic curves. This paper presents new explicit formulae for pairing implementation in Edwards coordinates. We prove our method gives performances similar to those of Miller’s algorithm in Jacobian coordinates and is thus of cryptographic interest when one chooses Edwards curve implementations of proto...
متن کاملFault Attacks against the Miller's Algorithm in Edwards Coordinates
Initially, the use of pairings did not involve any secret entry. However in an Identity Based Cryptographic protocol, one of the two entries of the pairing is secret, so fault attack can be applied to Pairing Based Cryptography to nd it. In [18], the author shows that Pairing Based Cryptography in Weierstrass coordinates is vulnerable to a fault attack. The addition law in Edwards coordinates i...
متن کامل